首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1195篇
  免费   101篇
  国内免费   89篇
  2023年   19篇
  2022年   34篇
  2021年   25篇
  2020年   26篇
  2019年   38篇
  2018年   35篇
  2017年   56篇
  2016年   56篇
  2015年   44篇
  2014年   55篇
  2013年   47篇
  2012年   29篇
  2011年   47篇
  2010年   30篇
  2009年   62篇
  2008年   97篇
  2007年   65篇
  2006年   57篇
  2005年   59篇
  2004年   44篇
  2003年   40篇
  2002年   42篇
  2001年   39篇
  2000年   22篇
  1999年   34篇
  1998年   35篇
  1997年   23篇
  1996年   10篇
  1995年   9篇
  1994年   32篇
  1993年   17篇
  1992年   14篇
  1991年   23篇
  1990年   17篇
  1989年   8篇
  1988年   11篇
  1987年   13篇
  1986年   16篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   7篇
  1981年   6篇
  1980年   8篇
  1979年   2篇
  1978年   3篇
  1976年   4篇
  1973年   4篇
  1967年   2篇
  1962年   1篇
排序方式: 共有1385条查询结果,搜索用时 15 毫秒
1.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
2.
M. Ohsawa 《Plant Ecology》1995,121(1-2):3-10
A new template for mountain vegetation zonation along latitudinal gradients is proposed for examining geographical pattern of various forest attributes in humid monsoon Asia. The contrasting temperature regime in tropical and temperate mountains, i.e., the former is a non-seasonal, temperature-sum controlled environment, and the latter is a seasonal, low temperature limiting environment, leads to different altitudinal patterns of tree height distribution and species richness. In the tropical mountains, both tree height and species richness decrease steeply, and the tree height often stepwise. The decline of tree height and species diversity in the temperate mountains is far less pronounced except near the forest limit. Both trends are explained by their temperature regime.  相似文献   
3.
Role of Thidiazuron (TDZ) in inducing adventitious organogenesis in Pongamia was studied. TDZ at different concentrations (0, 0.45, 2.27, 4.54, 6.71, 9.08, 11.35, 13.12 and 22.71 μM) were used for induction of caulogenic bud formation in deembryonated cotyledon explants. Each cotyledon was cut into three segments and identified as proximal, middle and distal. Duration of TDZ exposure, influence of the segment and orientation of the explant were studied. TDZ at 11.35 μM concentration was optimum for the induction of shoots and rapid elongation. Shoots induced at higher concentration elongated after several passages in growth regulator free medium, thereby extending the period of differentiation. Exposure of the explant for 20 days yielded more number of buds than 10 days. Proximal segment of the cotyledon was more responsive. Contact of abaxial surface in the medium was more effective and generated more buds than the adaxial side. Buds differentiated and elongated on transfer to MS basal medium for 8–12 passages of 15 days each. Rooting and elongation of shoots was achieved in charcoal supplemented half-strength MS medium. Rooted plantlets survived on transfer to sand soil mixture. The plants were hardened and transferred to green house. This is the first report on in vitro regeneration of Pongamia pinnata via adventitious organogenesis using TDZ. This protocol may find application in studies in genetic transformation, isolation of somaclonal variants and in induction of mutants. It also provides a system to study the inhibitory role of TDZ on shoot differentiation.  相似文献   
4.
Climatic harshness is expected to increase at higher elevations; however, elevational trends of tree radial growth response of high-elevation forests to climate change need to be investigated at different locations because of existing local variability in site-specific climatic conditions. We developed tree-ring width chronologies of Yunnan fir (Abies georgei) along elevation gradients at two sites in the central Hengduan Mountains (HM). High-elevation forests of A. georgei showed growth synchronicity and common growth signals along elevation gradients, indicating a common climatic forcing, although tree radial growth rates decreased with increasing elevation. Radial growth of Yunnan fir showed positive correlations with summer temperatures and February precipitation and moisture availability, but were negatively correlated with spring temperatures. The strongest positive relationship indicated summer (July) mean and minimum temperatures are the most important growth determining climatic factors for tree radial growth in the cold environment of HM, and this relationship revealed a clear elevational trend with stronger correlations at higher altitudes. In contrast, tree radial growth was negatively correlated with June precipitation and moisture availability. The whole study period 1954–2015 was split in two sub-periods of equal length. Comparing the early sub-period (1954–1984) to the later sub-period (1985–2015), tree growth response to the summer temperatures strongly increased, while it became weaker to June precipitation and moisture availability. High-elevation Yunnan fir forests in the HM currently benefit from elevated growing season temperatures under humid summer conditions. However, increasing temperatures may induce drought stress on tree radial growth if the observed decreasing trend in humidity and precipitation continues.  相似文献   
5.
One of the greatest threats to biodiversity and the sustainable functioning of ecosystems is the clearing of forests for agriculture. Because litter-dwelling ants are very good bioindicators of man-made disturbance, we used them to compare monospecific plantations of acacia trees, cocoa trees, rubber trees and pine trees with the surrounding Neotropical rainforest (in contrast to previous studies on forest fragments embedded in industrial monocultures). Although the global level of species turnover was weak, species richness decreased along a gradient from the forest (including a treefall gap) to the tree plantations among which the highest number of species was noted for the cocoa trees, which are known to be a good compromise between agriculture and conservation. Species composition was significantly different between natural habitats and the plantations that, in turn, were different from each other. Compared to the forest, alterations in the ant communities were (1) highest for the acacia and rubber trees, (2) intermediate for the cocoa trees, and, (3) surprisingly, far lower for the pine trees, likely due to very abundant litter. Functional traits only separated the rubber tree plantation from the other habitats due to the higher presence of exotic and leaf-cutting ants. This study shows that small monospecific stands are likely sustainable when embedded in the rainforest and that environmentally-friendly strategies can be planned accordingly.  相似文献   
6.
Forest decline and increasing tree mortality are of global concern and the identification of the causes is necessary to develop preventive measures. Global warming is an emerging factor responsible for the increasing tree mortality in drought-prone ecosystems. In the southwestern Iberian Peninsula, Mediterranean holm oak open woodlands currently undergo large-scale population-level tree die-off. In this region, temperature and aridity have increased during recent decades, but the possible role of climate change in the current oak mortality has not been investigated.To assess the role of climate change in oak die-off in managed open woodlands in southwestern Spain, we analyzed climate change-related signals in century-long tree ring chronologies of dead holm oaks. We examined the high/low-frequency variability in growth and the relationship between growth and climate.Similar to other Mediterranean forests, growth was favored by precipitation from autumn of the year prior to ring formation to spring of the year of ring formation, whereas high temperatures during spring limited growth. Since the 1970s, the intensity of the high-frequency response to water availability increased simultaneously with temperature and aridity. The growth trends matched those of climatic changes. Growth suppressions occurred during droughts in the 1970s, 1980s and 1990s. Widespread stand-level, age-independent mortality occurred since 2005 and affected trees that cannot be considered old for the species standards.The close relationship between growth and climate indicate that climate change strongly controlled the growth patterns. This suggests that harsher climatic conditions, especially increased aridity, affected the tree performance and could have played a significant role in the mortality process. Climate change may have exacerbated or predisposed trees to the impact of other factors (e.g. intense management and pathogens). These observations could suggest a similar future increase in oak mortality which may occur in more northern oak open woodlands if aridity further increases.  相似文献   
7.
Dendrochronological studies of large and old Sequoia sempervirens are limited by access and complex crossdating, but core sampling at regular height intervals along the main trunks of five standing trees allowed for reconstruction of growth, height, and age while providing within-tree replication for crossdating. We developed a crossdated ring-width chronology (1453–2015) for redwoods growing in an easternmost old-growth forest in the Napa Range of California, determined aboveground tree attributes, investigated the inter-annual climate-growth relationships since the late 19th century, and documented long-term growth trends. Age, height, f-DBH (functional diameter at breast height), and aboveground biomass of these co-dominant trees ranged from 241 to 783 years, 45.7 to 61.5 m, 117.0 to 226.9 cm, and 9.34 to 33.62 Mg, respectively. Bootstrapped correlation and response function analysis showed radial growth positively related to May through August Palmer Drought Severity Index (PDSI) and negatively related to maximum June temperature (r ≥ │0.47│, P < 0.0001), explaining 33.3% of ring-width variation. Bootstrapped correlations over a moving 40-year window indicated strengthening relationships with PDSI and minimum temperature. The long-term growth trend, reflected by the size-detrended metric of residual wood volume increment (RWVI), varied over time and showed an average one-year decrease of 13.3% for 20th and 21st century droughts. A fire detected in August 1931 corresponded with a one-year decrease in RWVI of 43.1% followed by >100% increase within five years. Growth dynamics for redwoods in this interior forest provide a point of comparison for redwoods previously studied in old-growth forests along the latitudinal gradient, highlighting range-wide trends and site-specific differences in responses to climate and fire.  相似文献   
8.
9.
Question: What was the role of fire during the establishment of the current overstory (ca. 1870–1940) in mixed‐oak forests of eastern North America? Location: Nine sites representing a 240‐km latitudinal gradient on the Allegheny and Cumberland Plateaus of eastern North America. Methods: Basal cross‐sections were collected from 225 trees. Samples were surfaced, and fire scars were dated. Fire history diagrams were constructed and fire return intervals were calculated for each site. Geographic patterns of fire occurrence, and fire‐climate relationships were assessed. Results: Fire was a frequent and widespread occurrence during the formation of mixed‐oak forests, which initiated after large‐scale land clearing in the region ca. 1870. Fire return ranged from 1.7 to 11.1 years during a period of frequent burning from 1875 to 1936. Fires were widespread during this period, sometimes occurring across the study region in the same year. Fires occurred in a variety of climate conditions, including both drought and non‐drought years. Fires were rare from 1936 to the present. Conclusions: A variety of fire regime characteristics were discerned. First, a period of frequent fire lasted approximately 60 years during the establishment of the current oak overstory. Second, fire occurred during a variety of climate conditions, including wet climates and extreme drought. Finally, there was within‐site temporal variability in fire occurrence. These reference conditions could be mimicked in ongoing oak restoration activities, improving the likelihood of restoration success.  相似文献   
10.
The radial growth of Duprez’ cypress (Cupressus dupreziana A. Camus), a tree endemic to the Tassili n’Ajjer in the Central Sahara, was measured from cores taken in 1967 and 1997 from the same trees. A comparison of these cores, spanning 30 years, reveals that even in this hyper-arid climate, this species has a juvenile vigour comparable to other Mediterranean Cupressaceae. Wide individual variability was found, however, which was induced by the strong influence of microhabitat factors. Traditional dendrochronological methods of cross-dating are impossible to apply in the case of these trees. Ages of eight individuals were estimated with the help of radiocarbon dating, yielding an age range from 600 to 2400 years for trees of the most usual girths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号